
Evidence for a square vortex lattice in  from muon-spin-rotation measurements

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1998 J. Phys.: Condens. Matter 10 7445

(http://iopscience.iop.org/0953-8984/10/33/013)

Download details:

IP Address: 171.66.16.209

The article was downloaded on 14/05/2010 at 16:41

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/10/33
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter10 (1998) 7445–7451. Printed in the UK PII: S0953-8984(98)94464-2

Evidence for a square vortex lattice in Sr2RuO4 from
muon-spin-rotation measurements

C M Aegerter†, S H Lloyd‡, C Ager§, S L Lee§, S Romer†, H Keller† and
E M Forgan‡
† Physik-Institut der Universität Zürich, CH-8057 Z̈urich, Switzerland
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Abstract. A muon-spin-rotation study of the flux-line lattice in Sr2RuO4 is presented. For the
field parallel to the crystallographicc-direction, the observed field distribution strongly indicates
a square symmetry of the vortex lattice. We determine the value of the coherence length from
the upper critical field and the Ginzburg–Landau parameter which is found to beκ = 1.2(1)
from the field distribution. This gives a value for the penetration depth ofλ = 185(15) nm.
The temperature dependence of the penetration depth is measured.

The recent discovery of superconductivity in the perovskite compound Sr2RuO4 (SRO) has
resulted in much increased experimental as well as theoretical research activity on this
system [1]. Like the high-temperature superconductors (HTS), SRO is a layered compound.
In fact, SRO is isostructural with the HTS La2−xBaxCuO4, but is the only known layered
perovskite superconductor which does not contain copper. The striking difference inTc
between SRO (Tc ∼ 1 K) and the HTS (Tc ∼ 100 K) provides a challenge to theories
which aim to explain superconductivity in these systems reflecting the different normal-
state properties.

The related compound SrRuO3 is ferromagnetic with a Curie temperature of∼160 K.
This has led to the proposal of p-wave superconductivity in SRO [2, 3], as the very strong
correlations are assumed to exist down to the superconducting transition, favouring p-wave
symmetry of the Cooper pairs. It has been argued that, as in the case of SrRuO3, strong
Hund’s rule coupling would lead to preferential formation of spin-triplet pairing of the Ru
moments [2, 3]. The superconducting transitionTc is much lower than the onset of well
developed Fermi liquid behaviour observed in resistivity data [4], and the coupling is thought
to be weak [2]. In the presence of nodes, weak-coupling p-wave superconductivity would
be unstable, with the result that a nodeless p-wave gap is predicted [2]. Thus measurements
of the temperature dependence of the penetration depth would not reveal any difference
from conventional s-wave pairing, showing a saturation ofλ−2(T ) at low temperatures. In
view of the above arguments, SRO is thought to be an analogue of the Balian–Werthamer
state of superfluid3He [5], but with a lattice potential and hence of interest in its own right.

In order to investigate the effects of possible p-wave superconductivity, we may still
study the temperature dependence ofλ. Although we may not be able to distinguish between
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conventional s-wave pairing and the proposed nodeless p-wave pairing, a linear temperature
dependence ofλ at low temperatures indicates the existence of nodes in the gap. In the HTS
such findings are usually connected with the proposed d-wave pairing in these systems. If
there are nodes in the gap for SRO, this may indicate the presence of non-unitary states [6],
or the occurrence of d-wave superconductivity. Muon-spin rotation (µSR) presents a very
effective tool for measuring the penetration depth in a type-II superconductor. Together with
neutron scattering and NMR, it is one of the very fewmicroscopicmethods investigating
the bulk of the material, as the muons penetrate fractions of a millimetre into the sample.

The sample consisted of a mosaic of several Sr2RuO4 single crystals of typical size
4× 3× 0.2 mm3. The mosaic covered an area of approximately 1 cm2. The crystals that
made up the mosaic were also characterized by x-ray diffraction. This revealed that the
samples had a mosaic spread of approximately 2◦, and thus were not of perfect quality.
This may also be associated with a certain amount of non-superconducting inclusions in the
samples, as we shall discuss below. The experiment was carried out at the LTF instrument
on beam lineπM3 at the Paul Scherrer Institute (PSI), Villigen, Switzerland, with the field
applied parallel to the crystallographicc-direction.
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Figure 1. The field probability distribution measured in an applied field of 6 mT, with a
background subtracted (see the text). The characteristic fieldsBmin, Bsad andBmax are clearly
visible. Their relative positions are highly consistent with the expectations for a square lattice
(see the text). We may then determine, together with the value ofBc2, the value of the penetration
depthλ. The inset shows a magnification around the maximum fieldBmax .

In a transverse-fieldµSR experiment, spin-polarized low-momentum muons are im-
planted in the sample at random, where they thermalize rapidly. The muon spins then
precess in the local magnetic field at the site of rest. Due to parity violation, the decay
positron is emitted preferentially in the direction of the muon spin, thus allowing the time
evolution of the muon polarization to be measured. As the muons are implanted at random
positions relative to the vortex lines, the real part of the Fourier transform of this time
evolution corresponds to the probability distribution of local fieldsp(B). In our analysis
we used a maximum-entropy algorithm [7] to deduce the Fourier transform. This field
probability distributionp(B) is intimately related to the distribution of local fieldsB(r) and
for type-II superconductors in the mixed state can be calculated theoretically [8]. This field
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distribution has some striking features, such as a tail extending to fields higher than the
applied field, due to vortex core fields, and a cut-off corresponding to the maximum field
in a flux line associated with the coherence lengthξ , i.e. the core radius. Together with the
mode of the field distribution (Bsad ), which theoretically corresponds to saddle points in
the local spatial distribution, this gives a measure of the two fundamental superconducting
parametersλ and ξ . Usually, at least in the study of HTS materials, it is assumed that
the London approximation,B � Bc2, is valid. This however is not the case for SRO
with Bc2 (in our sample)≈ 13 mT. Thus to obtain correct values forλ and ξ , we have
to use more sophisticated models. In the case ofB . Bc2, Sidorenkoet al [8] have been
able to analytically calculate the field distributionp(B) from Abrikosov’s solution of the
Ginzburg–Landau equations. Thus we are able to obtain, together with the experimentally
determined value ofBc2, the penetration depth and the coherence length. In a different
approach, we may use the scaling function recently derived by Yaouancet al [14] to extend
the London approximation for the full range of fields (see below).
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Figure 2. The temperature dependence of the upper critical fieldBc2, as determined from the
broadening of the field distribution. This can be seen, e.g., in figure 3, where the temperature
dependence of theµSR linewidth is shown for an applied field of 6 mT. The measurements
follow the general formBc2(T ) = Bc2(0)(1− (T /Tc)1.5), as indicated by the solid line, with
values ofTc = 0.95 K andBc2(0) = 13 mT, representing a measure of the coherence lengthξ

(see the text).

A typical field probability distribution from the mixed state in the sample is shown in
figure 1. This was taken at an applied field of 6 mT and a temperature of 50 mK. The
raw field distribution showed a background from muons precessing in the applied field.
The sample was backed by an Fe2O3 plate, to rapidly depolarize, outside the observable
time window, any muons not hitting the sample. Without a sample we do not detect any
signal; thus such a background has to arise from non-superconducting inclusions in the
crystals. For the field distribution in figure 1, a Gaussian distribution of a width of 0.22 mT
(corresponding to the nuclear and instrumental broadening as measured in the normal state)
and centred at the applied field was subtracted. The area of the Gaussian made up 20% of
the lineshape. This subtraction allowed us to properly identify the characteristic fieldsBmin,
Bsad andBmax that we use in our analysis. It has to be noted however that the minimum
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and maximum fields are unchanged by the subtraction of the background, as they are far
removed from the applied field.

In the Abrikosov approximation, all of the characteristic fields depend on

Bc2/(1+ β(2κ2− 1))

whereβ is a factor of order unity depending on the symmetry of the vortex lattice. Thus
for obtaining an estimate of the Ginzburg–Landau parameterκ, the upper critical fieldBc2

has to be known. In theµSR experiments, we determined the temperature dependence of
Bc2 from the onset of the broadening of the field distribution, as a function of temperature
at fixedB. Thus measuringTc as a function of the applied field allows us to estimate the
low Bc2(0) of SRO to good accuracy. In figure 2, we show the field dependence ofTc,
resulting in an estimate ofTc(0) = 0.95 K andBc2(0) = 13 mT. These values are somewhat
lower than usually quoted in the literature [4], withTc-values extending up to 1.5 K and
Bc2-values of up to 70 mT. This may be due to the strong suppression ofTc by impurities
[9] combined with the quality of the crystals used here. We may thus obtain the coherence
length fromBc2 = 80/2πξ2 as ξ = 155(15) nm. We may then also determine, together
with the information obtained from the field distribution, the penetration depthλ and thus
also the Ginzburg–Landau parameterκ.

It should be noted, however, that in the region of the measurements at a considerable
fraction of Bc2, the nature of the pairing might become important. This would affect the
measurements mainly as regards changes of the latticestructure. Although the Abrikosov
solution assumes an isotropic s-wave core, in contrast to the theoretical expectation that the
pairing symmetry is of p-wave type in SRO, the field distribution is mainly affected by the
structure of the vortex lattice as opposed to the exact field distribution of a single vortex
line. We shall therefore consider the possibility that the overall structure of the vortex
lattice may change to allow for changes induced by the vortex core, while calculating
the lineshape corresponding to such a lattice structure from the Abrikosov solution. We
may then compare the observed field distributions with predictions of different lattice
morphologies in the Abrikosov limit. As in this case the characteristic fieldsBmin, Bsad
andBmax are interdependent, the relative positions of these fields may be used to find a
consistent description of the field distribution in terms of a vortex lattice morphology. From
the calculations of Sidorenkoet al [8] we find that the parameter

γ = Bmax − Bsad
Bsad − Bmin (1)

differs strongly in the case of a hexagonal (γ4 = 8) and square lattice (γ� = 2.5). In
the experiment, we observe all three characteristic fields. In an applied field of 6 mT
(see figure 1), the characteristic fields areBmin = 3.8(2) mT, Bsad = 5.5(1) mT and
Bmax = 9.0(2) mT. This results in the experimental value ofγ6 mT = 2.3(2), in good
agreement with the expectation for a square lattice. Similar values can be found from the
field distribution in an applied field of 3 mT, where we obtainγ3 mT = 2.3(3), again in
very good agreement with the values for a square lattice. In this respect, we would also
like to note thatµSR represents a local measurement. Therefore static disorder will only
be measured over a unit cell of the vortex lattice and is averaged over all unit cells in the
final picture. Hence any static disorder present in the vortex lattice can be estimated from
the smearing of the cut-off fieldsBmin andBmax [11]. This smearing is of the order of the
instrumental resolution (〈1B2〉1/2 = 0.27(3) mT) and thus the static disorder in the lattice
must be small. We thus conclude that, possibly due to some non-local interactions or in-plane
anisotropy, the vortex lattice in SRO is of a square morphology, in agreement with recent
neutron small-angle scattering (SANS) results [10]. It has to be noted however, that the flux
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lattice structure may change as a function of field in conventional s-wave superconductors
[12]. These effects have already been observed in members of the borocarbide family
RNi2B2C [13].

Therefore we may now extract the G–L parameterκ from the characteristic fields, using
the numerical predictions given in reference [8]. For this, we useBmax , as it is the most
accurately determined. Using

Bmax − 〈B〉 = Bc2 − 〈B〉
1+ 1.18(2κ2− 1)

(2)

we find κ = 1.2(1), resulting in a value of the penetration depth ofλab = 185(15) nm.
The value of the penetration depth may also be determined from a general solution to
the G–L equations [14]. This gives a scaling function capable of extending the London
approximation to fields comparable toBc2. In the London approximation,Bsad for a square
lattice is given by [8]

(Bsad − 〈B〉) = −1

2

80

4πλ2
ln 2f (B/Bc2) (3)

where80 = h/2e is the flux quantum, andf (b) is the scaling function calculated in
reference [14]. Evaluating this function at 6 mT, whereBsad − 〈B〉 = −0.5 mT, results
in f (0.4) ' 0.22. This gives a value for the penetration depth ofλab = 200(20) nm,
consistent with the result obtained in the Abrikosov limit.

These values for the penetration depth are similar to those found in cuprate HTS [15].
However, the coherence length tends to vary inversely withTc [16], and we find thatξ for
SRO is∼100 times longer than for cuprates. This gives rise to substantial differences in the
vortex behaviour in the HTS and SRO. Whereas the short coherence lengths (ξc � layer
spacing) of the HTS may lead to quasi-two-dimensional vortex behaviour (e.g. in BSCCO),
SRO behaves more like a three-dimensional superconductor in spite of its considerable
anisotropy. Moreover, due to the low value ofκ ' 1.2, we might expect to observe a
crossover from type-II superconducting behaviour to that of a type-I superconductor [17].
This, however, would necessitate a temperature dependence ofκ originating in different
temperature dependences ofξ andλ. The temperature dependence of the coherence length
can be inferred from figure 2, where the temperature dependence ofBc2 ∝ 1/ξ2 is given.

In order to measure the temperature dependence ofλ, we measured the width of the
field distribution

〈1B2〉1/2 ∝ (1/λ2)f (b)

at different temperatures. A closer inspection of the temperature dependence ofλ can
also give insights into the pairing symmetry of the superconducting wavefunction, although
several other quantities may have similar influences on the muon signal. At such low
values ofκ and low temperatures, the effect of thermal fluctuations of the flux lattice is
small and can be neglected. In order to obtain the temperature dependence ofλ−2 from that
of 〈1B2〉1/2, the temperature dependence ofBc2 has to be taken into account as well. This is
done by dividing the second moment by the functionf (b) [14] (see also equation (3)). The
result of this is shown in figure 3. In the plot, instrumental and nuclear broadening have been
taken into account by subtracting the second moment in the normal state from that in the
superconducting state. As can be seen in the figure, the temperature dependence of 1/λ2(T )

can be represented by a linear function over most of the temperature range. Comparing this
with the temperature dependence of the coherence length, we find very similar behaviour,
leading to a constant value ofκ with temperature change and hence no crossover to a
type-I superconductor. Concerning the symmetry of the wavefunction, a supposed p-wave
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Figure 3. The temperature dependence of theµSR linewidth 〈1B2〉1/2 corrected for the
temperature dependence ofBc2 for an applied field of 6 mT. The variance of the field distribution
in the normal state has been subtracted. This presents a measure of the temperature dependence of
the penetration depthλ(T ). The temperature dependence can be represented by a linear function
at low temperatures (dashed line), but may however also be fitted with a BCS-like temperature
dependence (solid line). A linear temperature dependence would indicate the presence of nodes,
inconsistent with a simple constant-gap p-wave symmetry of the superconducting pairs (see the
text).

state having no nodes should show saturation ofλ−2(T ) at low temperatures, similar to the
expectations for an s-wave superconductor. The data presented in figure 3 are consistent
with a linear temperature dependence at low temperatures similar to that found in the HTS
[18]. This is usually taken to indicate the presence of nodes, which is inconsistent with
the theoretical expectations [2]. The data are however also consistent with a power-law
expression of the form

λ−2(T ) = λ−2(0)(1− (T /Tc)2.5) (4)

which saturates at low temperatures, like that expected from BCS. This would imply a
nodeless energy gap, of s- or p-wave symmetry. In this scenario, the strong suppression of
Tc with impurities [9] would however favour p-wave symmetry. Impurities in the sample
might also change the temperature dependence ofλ from its intrinsic shape. In the HTS,
they usually lead to a flattening ofλ−2(T ) versusT at low temperatures.

In conclusion, we have studied the vortex lattice in the novel perovskite superconductor
SRO. We find that the field probability distribution is highly consistent with that of a
square vortex lattice. We note that this flux lattice structure is also found in samples with
higher Bc2 and Tc by SANS [10], suggesting that a square vortex lattice is independent
of the impurity concentration and is a fundamental property of this system. From the
field distribution, together with the observed dependence ofBc2, we also estimate the
low-temperature values and temperature dependences of the fundamental superconducting
parametersξ , λ andκ for this sample. The results are similar to those obtained in [4], but
a direct comparison is difficult, as the superconducting parameters may be influenced by
depairing due to impurities. We can however conclude that SRO has lowκ, largeξ and a
square flux-line lattice.
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